Corridorizing Regional Globalization

The Reach and Impact of the China-Centric Rail-Led Geoeconomic Pathways across Europe and Asia

Xiangming Chen

ABSTRACT

As globalization has partially retreated since the Great Recession of 2008–9, it has taken on an increasingly regionalizing form and force, with both integrating and fragmenting consequences. By advancing six large-scale economic corridors, China’s Belt and Road Initiative has unleashed a round of regionalizing globalization by corridorizing local and translocal urban and economic development along large-scale China-driven transport projects. In this chapter, I first conceptualize economic corridorization as a new round of globalization from below that enriches and advances the discourse on globalization. Then I trace and explore the cross-border geoeconomic pathways shaped by China-driven, rail-led regional economic corridors, through the paired cases of the China-Europe Freight Train and the China-Laos Railway. The analysis focuses on how logistics and trade flows along these rail-enabled corridors foster new translocal economic ties, industrial restructuring, redistributes consumption power, and thus fosters regional globalization from the middle and below. The chapter concludes on how this type of corridorized regionalization reterritorializes the extant paths of globalization and creates new economic pathways of globalization.

KEYWORDS

Belt and Road Initiative, China-Europe freight train, China-Laos Railway, corridorization, regional globalization

Viewed through a short historical lens on the first twenty-plus years of the twenty-first century, globalization has taken three successive big blows with lingering impacts: the Global Financial Crisis of 2008, the nationalist-populist ideology
and protectionist policies of the Trump administration during 2017–21, and the COVID-19 global pandemic of 2020–22. In the face of these three setbacks to globalization, China came out of the global financial crisis less scathed than the West, absorbed much of the negative impact of Trump’s trade tariffs and economic sanctions, and secured a faster economic recovery from the pandemic than the rest of the world. More importantly, through the Belt and Road Initiative (BRI), launched in 2013, China has been a powerful force pushing global trade and investment. Emanating from opposite sources, the West’s partial stepping-back from globalization and China’s stepping up to it have met and produced far-reaching global, regional, and local consequences.

Since its reform and opening in the late 1970s, China has steadily become a leading force for economic globalization from its considerably elevated position in the global economy. Registering at just 1 percent of the world’s GDP and trade in the late 1970s, China brought both indicators to around 15 percent by 2020 (The Global Economy, n.d.; Nicita & Razo, 2021; Statista, n.d.). China accounted for about one-third of global economic growth over a full decade through 2019, larger than the combined share of global growth from the United States, Europe, and Japan (Rothman, 2021). Through the BRI, China has committed or disbursed around $600 billion in loans since 2013, compared to $490 billion by the entire group of multilateral development banks such as the World Bank (CISON PR Newswire, 2020). The BRI has also added a distinctive regional dimension to globalization through its six large-scale economic corridors and their score of subcorridors. This has introduced a new mode of “globalization from the middle” through the regional corridorization of new globalizing economic pathways that draw more countries and cities into their linked loops of infrastructure and urban development.

I start this chapter by tracing the intellectual lineage of earlier corridorized urbanization as a conceptual bridge to the new period of BRI-driven regional corridorization of globalization. I see the simultaneous upscaling of corridor-shaped regional economic dynamics toward the global scale and the downscaling of newly connected flows along the BRI corridors to translocal economic connectivity and development. Then, using the China-Europe Freight Train and the China-Laos Railway, I explore these rail-led economic pathways as the driver and facilitator of corridorizing regional globalization across China-Europe and China-Southeast Asia. In conclusion, I draw insights for better understanding corridorized globalization and its long-run cross-border regional and local consequences.

TOWARD CORRIDORIZING GLOBALIZATION

Globalization via corridorization is heavily and distinctively regional in formation and shape, with expected regional consequences and broader translocal spillovers. While regional development along an urban-economic corridor is not new, corridor-triggered globalization with large-scale cross-border regional and local dimensions is fairly recent, having come into view since the BRI. By promoting six
cross-border regional economic corridors stretching from deep inside China to neighboring and far-flung countries and cities (see figure 9.1A), including and via a number of subcorridors (not shown), the BRI has unfolded an era of globalization through regional corridorization as a new dimension to the existing geography of globalization. As this corridorizing globalization takes shape, it runs against the recent forces of deglobalization by activating latent conditions and forces spread along a given transport corridor in producing new opportunities and challenges for regional and local development within and across national boundaries. To the extent that corridorizing globalization is new or not, it calls for tracing its sources of reference.

The shape of corridorizing globalization is related to its local scale of urban corridors, whose origin can be traced to the emergence of metropolitan extensions beyond local administrative boundaries in advanced economies in the early 1960s, if not much earlier. One could even argue that the ancient Silk Road, which inspired the BRI, might be the world's first long trade corridor, even though it involved many barely connected paths or subcorridors (Hansen, 2015). Linearity via transport infrastructure is a defining feature of modern urban corridors, which can also involve two other axes—of urbanization and economic development—between two or more city-regions. Besides their generic linear structure, urban corridors take on such network attributes as poles at either end, nodes between two poles, and branches and intermediate points serving as spin-off lines and secondary hubs (Georg, Blaschke, & Taubenböck, 2016). These features bear both the vertical and horizontal network characteristics of spatially embedded regional infrastructure-led economic systems.

To draw further inference about corridorized globalization from urban corridors, the factors of scale, length, border, level of development, and the state are critically relevant. The sixty-seven global urban corridors identified by Isabel Georg et al. (2016) are typically between 400 and 1,200 km long, 70 to 200 km wide, and with a length-to-width ratio between four and ten (see figure 9.1B). They are generally shorter than the six BRI corridors, as the China-Pakistan Economic Corridor (no. 6 in figure 9.1A) runs over 3,000 km from Gwadar, Pakistan, to Kashgar, Xinjiang, although the BRI corridors’ width is numerically vague due to a lack of clear measuring criteria. About 95 percent of those sixty-seven urban corridors begin and end within national territories, such as the classic case of the Boston-Washington (BosWash) corridor along the U.S. Northeastern Seaboard (no. 12 in figure 9.1B), while all six BRI corridors span multiple national borders and remote border cities. In addition, approximately 60 percent of the sixty-seven urban corridors are anchored to and pass through two or more major national and international centers and their well-integrated hinterlands in advanced economies, while the six BRI corridors cover a variety of less developed countries and cities with the latter’s surrounding regions. Finally, most urban corridors are market-induced, with very limited formal national and subnational planning and relatively little inter-city coordination. The BRI corridors, however, are driven by
the Chinese state and its planned and built infrastructure projects across international boundaries (X. Chen, 2022).

The global dimensions and impacts of new regionally scaled corridorization like the BRI corridors intersect with existing regional and local paths of development. A BRI corridor creates a new spatial pathway along which one or more sectoral
activities can be triggered. These can form complementary or competing relationships with extant path(s) of development for stronger growth or intraregional frictions hampering growth (Breul, Hulke, & Kalvelage, 2021). Via large and long infrastructure projects like the China-Laos Railway, BRI corridor development alters extant regional and local territories, traverses multiple national borders, impacts adjacent ecological environs, and potentially disrupts local livelihood. From specific locales and across a regional terrain, corridorized globalization associated with the BRI occurs along new economic pathways that discharge and distribute benefits and risks across previously unconnected or weakly connected places and scales.

**CORRIDORIZING GREATER TRADE FLOWS ACROSS EURASIA: THE CHINA-EUROPE FREIGHT TRAIN**

The seed of corridorizing regional globalization was sowed into and along the corridor-shaped Silk Road Economic Belt, the overland route snaking from China to Europe (figure 9.1A) that was conceived by the BRI to retrace and revitalize the rough geographic contour of the ancient Silk Road across Eurasia. Predating the BRI, in 2011, the inaugural China-Europe Freight Train (CEFT) carried electronics products from the city of Chongqing in southwestern China to Duisburg, Germany, through Kazakhstan, Russia, Belarus, and Poland. The number of CEFTs rose from only 17 in 2011 to 15,183 in 2021, adding up to 50,000 freight trains that ran along 78 routes between over 60 Chinese cities and 180 cities across 23 European countries plus Central Asian countries by February 2022 (China BRI Website, 2022d).

Stretching beyond the ancient Silk Road, the CEFT routes channel diverse and complex cargo flows, forming a transcontinental transport network that features three main corridors/routes (figure 9.2A). The largest number of CEFTs run along the Western route, which largely aligns with the New Eurasian Land Bridge Corridor, the older version of which linked Lianyungang and Amsterdam, while a few alternative lines of the Western route pass by the BRI’s China-Central Asia-West Asia Corridor. The Eastern route connects some of China’s coastal cities and older industrial cities in Northeast China to Russia, while the Northern route connects northern China to Russia through Mongolia. Both routes align with the BRI’s China-Mongolia-Russia Corridor. The CEFT’s recently extended intermodal routes run back east and south to sea along the China-Indochina Peninsular Corridor to Southeast Asia (no. 4 in figure 9.1A). Despite their uneven spatial coverage and access with widespread points of departure and destination, the rapidly expanded CEFT routes exhibit a geographic affinity with four of the BRI’s six economic corridors.

To reveal cities forming and linking the CEFT routes, figure 9.2B presents four regional zones with subzones between China’s coast and Europe’s Atlantic coast, approximating the geographic layout of a Eurasia-centric map. The four zones
The China-Europe Freight Train’s Main Travel Corridors/Routes.

contain the departing, transit, and arriving places for a variety of CEFT routes and the general locational and economic features and activities creating and sustaining these routes (see bottom row). Zone 1 includes three subzones of China’s more developed coastal cities, while Zone 2 covers three interior and border regions that have become the most active and dominant drivers of CEFTs as late developers and beneficiaries of China’s “Go West” campaign. Zone 3 consists of three regions of Asia that serve as departing cities, transit zones, and final destinations. Zone 4 comprises three regions further west, featuring Europe, which anchors the other end of the CEFT system. It also includes a few cities in West Asia, such as Istanbul, and North Africa (4C), although the latter is not directly connected with China by land (X. Chen, 2021b). The CEFT has facilitated the (re)cohering of historic Eurasia and its extension to Africa via the Mediterranean, which the BRI now reaches both by land and from the Indian Ocean through the Suez Canal. The four linked zones form and thread a number of rail freight routes that channel a vast amount of traded cargo within and between China and Europe, thus generating corridor-shaped regional forces for economic globalization.

**Figure 9.2B.** The China-Europe Freight Train (CEFT)’s Connected Routes across Four Trans-Regional Zones.

*Source:* Adapted from X. Chen (2021a): figure 2.
Illustrating the length of some of these rail corridors and their far reach, a freight train carrying electronic products and other goods left the Chinese city of Shenzhen (1C), bordering Hong Kong, for Duisburg on August 18, 2020. It traveled through twenty-seven Chinese cities including Chengdu (2C), exited at Alashankou (2A), passed through Kazakhstan (3A), and finally arrived in Duisburg (4A), eleven days later after a journey of 13,438 km. Labeled the “Great Bay Express,” the train has since run more regularly, creating a steady flow of exports from the manufacturing powerhouse of the Great Bay Area in southern China through Central Asia to eastern and western Europe (WeChat Platform, 2020). This route’s length is comparable to the Yiwu-Madrid (1B->4A) route, which spans 13,052 km, one of the longest CEFT routes. This train passes eight countries (the most of all CEFT routes), goes through three rail-gauge changes, involves relayed operation by sixty train drivers of multiple nationalities, and can take up to twenty-one days to run from China’s eastern city of Yiwu—the world’s largest distribution hub of small merchandise—to reach the Abronikar Rail Station, Madrid, where arrived cargo is transported on to final local and regional destinations in Spain and beyond (China BRI Website, 2022d). Both routes rank as the world’s longest continuous freight train lines along the New Eurasian Land Bridge Corridor (figure 9.1A) while encompassing many shorter subcorridors that link and string cities together within and across numerous Eurasian national boundaries.

The connectivity among the growing segments of the long CEFT routes has recently strengthened and diversified through more east-bound trains and growing intermodal shipping. Along an exemplary route, a freight train would go from Europe (4A) through Kazakhstan (3A) to Chongqing (2C), which on March 16, 2018, sent the first train south to Hanoi, Vietnam (3C), via the Chinese border city of Pingxiang, Guangxi province. This rail-rail route, which reduces transport costs by one-third over sea shipping, also extends south to the Chinese port city of Beihai, Guangxi province, from which the cargo can be shipped to Singapore (also 3C) via rail-sea intermodal shipping. These subcorridors help further connect and align the CEFT’s long and dominant Western route (figure 9.2A) with the China-Indochina Peninsular Corridor (figure 9.1A). This has also rendered the CEFT more balanced directionally. While every train ran from China to Europe before 2014, the return or backhaul trips in 2016 accounted for one-third of all trips and 45 percent of the total in 2019 (China BRI Website, 2020a). These developments contribute to the CEFT’s solidification as a networked corridorization of transcontinental rail freight.

The CEFT’s corridorization has impacted the relative positions and roles of the cities anchoring and along the freight routes in reshaping and mediating the spatial dynamics of production and consumption across Eurasia. While a few small and marginally located cities like Alashankou and Khorgos, Xinjiang (2A in figure 9.2B), have emerged as specialized border-clearing logistics centers, a number of second-tier regional hubs have used the CEFT as a logistics-led
development strategy to affect the geographic configuration and intersection of manufacturing supply chains and consumer goods flows within and between China and Europe. This local insertion into the CEFT system has unleashed new economic globalizing effects via intra- and cross-regional corridorization.

The city of Xi’an in northwestern China showcases this globalizing effect. The eastern anchor of the ancient Silk Road, X’an prospered as one of the earliest world cities during the Han (206 BC–220 AD) and Tang (618–907 AD) dynasties. Fast forward to the contemporary era, Xi’an fell behind its historic peers such as Nanjing in the coastal region and lagged far behind such coastal powerhouses as Shanghai and Shenzhen during the 1980s and 1990s. Xi’an has regained some of its lost fortune since 2000 from China’s “Go West” policy and the BRI (X. Chen, 2021c). This favorable turn for Xi’an, coupled with its location at China’s geometric center, positions it to leverage the CEFT as an effective logistics strategy for becoming a rail freight hub, stimulating catch-up development and generating economic influence within and beyond China.

Xi’an’s logistics strategy began with the construction of the Xi’an International Trade and Logistics Park (ITLP) in 2008. The ITL Group, the municipal company in charge of the ITLP’s logistics functions, launched the first train to Almaty, Kazakhstan, in 2013. In 2021, Xi’an sent and received a daily average of twelve CEFTs, which numbered a total of over thirty-eight hundred trains, ahead of Chengdu and Chongqing as China’s second- and third-ranked cities, and accounted for about one-third of China’s total number of CEFTs (China BRI Website, 2022d). To illustrate the far reach and broad impact of the CEFT’s rapid growth from and dense concentration in Xi’an, September 2019 saw the ITL Group dispatch the first “LG block train,” which carried exclusive liquid-crystal display (LCD) panels and electrodes to the factory owned by the large Korean manufacturer located in the Polish town of Sławków, 56 km from Kraków, via Ukraine. Instead of around forty days by sea, these containerized parts on a dedicated freight train arrived in the destination in ten to twelve days. Since 2019, LG has already sent over one thousand TEUs of parts to its factory in Sławków on the “Chang’an Express” after shipping them from Korea to the Chinese port city of Qingdao and then to Xi’an for Europe (China BRI Website, 2020b). By turning this logistics corridor spanning 1A->2B->2A->3A->4A (see figure 9.2B) into an economic pathway, Xi’an has helped redirect a global supply chain from East Asia via western China to central Europe. Russia’s invasion of Ukraine in February 2022, however, forced this freight line to be rerouted away from Ukraine to enter Poland from Belarus. To use a much safer route, Xi’an has directed more freight trains to bypass Russia directly to the Kazakh port of Aqtau on the Caspian Sea where containers would be shipped by boat to the Azeri port of Baku and then move on trains again to pass Tbilisi and the Turkish city of Kars before going further west to Europe via Istanbul.

From production to consumption, the ITL Group has worked with Volvo in connecting and redistributing the transportation and delivery of different Volvo
Globalization: Present  

Cars made and sold in Chinese and European markets. In June 2018, a CEFT train departed from Ghent and arrived at Xi’an Vehicle Port with 160 European-made Volvo XC90 SUVs and V40 hatchbacks, after sixteen days. These more expensive models sell very well in China, the world’s largest market for Volvo cars. In 2019, a train loaded with 160 XC60 SUVs left Xi’an for Ghent, Belgium, on an eighteen-day journey. Made at Volvo’s plant in China, the XC60 were sold in twenty-five European countries including France and Germany (Yan, 2018; Fusheng, 2019). During the first three months of 2020 when China was suppressing the pandemic, twenty-seven trains from Xi’an carried 3,377 XC60s (averaging 125 cars per block train) to the European markets through a fast and secure system from truck to train without exposing the new cars to potential virus contamination (Jiangxi TV Station, 2020). Since it became regularized, this dedicated logistics corridor has sustained the flow of a major product for large consumer markets at both ends of Eurasia. Its likely robustness stems from being anchored to Volvo’s spatially reorganized production and supply chains linking China and Europe.

A NEW REGIONAL GLOBALIZING PATH:  
THE CHINA-LAOS RAILWAY

As the CEFT has generated more corridorized trade flows via its many routes along the east-west BRI corridors, another corridor shaped by the China-Laos Railway (CLR) has recently stimulated a new economic pathway along the north-south China-Indochina Peninsular Corridor (figure 9.1A). The idea for the CLR germinated in 2010, with its bilateral agreement signed at the end of 2014 and its ground broken in 2016, and it became operational on December 3, 2021. The CLR stretches a little over 1,000 km, with about 600 km from Kunming to Mohan on the border with Laos and around 420 km from Vientiane to the town of Boten bordering Mohan (see figure 9.3). The CLR carries both passenger and cargo on standard gauge tracks in one unified electrified system across two national territories.

The CLR runs along twenty passenger stations in the China segment and ten stations for the Lao segment. It passes through ninety-three tunnels and over 136 elevated bridges within China and seventy-five tunnels and 165 bridges inside Laos. The lengths of all tunnels and bridges add up to 712 km, accounting for 76.5 percent of the entire route. To electrify the train, the Chinese builders have completed 937 km of high-voltage lines through the border (X. Chen, 2021a). Inside Laos, Chinese builders put in twenty 115-kilovolt power lines over 257 km through eleven substation intervals with ten traction substations into the Lao State Grid (China BRI Website, 2021). The CLR train was designed on the mature technology of China’s Fuxing bullet train to meet the requirements of slower speed, larger capacity, and lower maintenance cost.

Running 160 km/hour carrying passengers and at 120km/hour for freight, which qualifies as medium speed, the CLR has become such a new economically
transformative transport artery that single-handedly turns Laos from a landlocked country to a landlinked one while also allowing landlocked Yunnan province to access the sea through Laos and Thailand (X. Chen, 2020). The CLR shortens a train trip between Vientiane and Boten to three hours from two days currently while reducing the journey from the border to Kunming to five or six hours. Since goods used to be transported slowly between China and Laos by road, only good for small quantities, or by relatively expensive air shipping, the CLR is now the happy medium carrying larger quantities of goods, especially time-sensitive agricultural goods more cost-effectively (see below) (Jun & Xuanmin, 2021). In essence, the CLR has become the spine for a train-led economic corridor with an emerging and longer-term role in stimulating trade and development along and through large underdeveloped regions on both sides of the China-Laos border.
While critics of the CLR pointed to insufficient use of Lao workers for the project and delayed compensation for them and some displaced rural households (X. Chen, 2020; Suhardiman et al., 2021), the CLR created over 110,000 jobs in Laos cumulatively, including many Laotians among the six thousand engineers and workers putting up the power transmission system at its peak. The CLR also subcontracted the use of local construction materials worth around $80 million. Its extended benefits from the construction included 2,000 km of water irrigation along the CLR’s feeder roads. In addition, as part of the CLR, the Chinese government has set up the Laos Rail Vocational Skills Academy in Vientiane. With integrated facilities for administration, training, and dormitories taking up 33,000 square meters of construction space, this academy has begun to train new Lao train engineers and drivers, some of whom had received basic training in China (WeChat Platform, 2021a).

As these construction-related benefits have sunk in, the early postoperation impact via the CLR’s long connective capacity at both translocal and cross-border regional scales has surfaced from a ramping-up of operating schedules. By January 2, 2022, just one month into operation, the CLR ran sixty-four passenger trains with 45,800 riders from both Kunming and Vientiane to the border, still under the pandemic closure for human crossings, and fifty freight runs in both directions carrying nearly 50,000 tons of cargo, some of which crossed the border after clearing rigid pandemic control procedures. Orders to book freight wagons going in both directions remained high (China BRI Website, 2022b). Given this early evidence on the CLR’s successful launch, the Lao president gave an optimistic 2022 New Year’s greeting to encourage the country to put the new train to full use (WeChat Platform, 2022).

Laos’s agricultural sector, with 60 percent of its workforce, stands to benefit much from the CLR. The Chinese government recently agreed to import larger amounts of Laos’s main exports such as rubber, cows, rice, cassava, and tropical fruits like bananas and oranges that could be transported efficiently as bulk cargo by the CLR. The newly paved feeder roads to the CLR stations from nearby villages in northern Laos allow local farmers to transport rice, cows, and fruits to the stations for shipping to China. In 2021, Laos’s exports to China as its largest trading partner were led by bananas worth $225 million, followed by rubber, cassava, corn, sugarcane, and watermelons. With a new bilateral agreement, Laos is planning to export 50,000 tons of orange-like fruits to China worth $50 million in 2022. These exports were critical to sustaining Laos’s overall exports of $26.5 billion during 2016–20 with an annual growth of 10.9 percent (WeChat Platform, 2021b). As the CLR will reduce the Vientiane–Kunming shipping cost by 40–50 percent, Laos’s export of corn to China is projected to grow 20 percent annually from the base of $1.7 billion in 2019 (World Bank, 2020). The CLR bodes well for sustaining the momentum of Laos’s exports to China.

The CLR is also facilitating bilateral trade from the Chinese side. The Guangzhou-based Asian Potash International Co., which owns the mining rights to a
large Potash mine in Gammon province, southeast of Vientiane, quickly booked the first freight train from Vientiane to ship locally manufactured Potash fertilizer to China and can use the return train to transport materials and equipment from China for expanding local mining and manufacturing in Laos. With growing demand for its Potash products in Yunnan and neighboring Guizhou province, this company is planning to expand production for the regional market in southwestern China and will save considerable time-cost relative to sea shipping between southern China and Laos via Cambodian and Thai ports like Bangkok (Sina.com, 2021). While this appears to benefit the Chinese investors in Laos considerably, the CLR is capable of creating greater connected economic payoffs to spur production-trade ties across the China-Laos border (X. Chen, 2022).

The CLR drives more flows across the border from its hub position in Kunming, reinforced by strong cross-city transport networks within China and between China and Southeast Asia as the RECP became effective on January 1, 2022. These fast transport connections have channeled export cargos to ride the CLR from Kunming. By December 31, 2021, 380 domestic freight trains had carried 150,000 tons of cargo from Shanghai, Guangzhou, and even Beijing to Kunming bound for Southeast Asia (China BRI Website, 2022c). Thus far, four freight trains destined for Vientiane directly have run from Shenzhen, Nanjing, Chengdu/Chongqing, and Huaihua, Hunan province, to and via Kunming. This growing cargo flow from Kunming and the rest of China to Vientiane and other Southeast Asian markets within a short period of time is poised to diversify further and thus enrich trade along the CLR and beyond (X. Chen, 2022). This will smooth and strengthen the longer and wider movement of goods between deep inside China and its neighboring concentric subregions of Southeast Asia (figure 9.3) along the China-Indochina Peninsula Economic Corridor.

Even if Kunming, Vientiane, Boten, and other small cities work together to link both passenger and freight movements along the CLR, both may still fall short of their combined full potential benefit unless the CLR is seamlessly docked with the planned China-Thailand High-Speed Railway linking Kunming to Bangkok, especially after RCEP became effective. As of now, the Laos-Thailand train connection is confined to the old meter-gauge track left by the French colonialists between the Thanaleng Rail Station on the Lao side, away from the Vientiane Station, the CLR’s terminus south of the city, and the Nong Khai Station and land port on the Thai side of the border defined by the Mekong River. On December 7, 2021, the fresh vegetables that arrived on a CLR freight train had to be picked up at Vientiane by thirty-three Thai trucks from Nong Khai to be forwarded to the rest of Thailand (China BRI Website, 2022a). While this saved a lot of shipping time and cost less than road transport from China to Laos and then to Thailand, it begs the creation of a direct and smooth Laos-Thailand connection.

The Thai government supports the building of a 5.35-km-long meter-gauge rail line from Thanaleng Station to northern Vientiane, already 70 percent completed, for improved near-border transport. This solution, however, still misses a direct
link to the CLR, although the Thai government is planning to build a new railway bridge next to the Thai-Lao Friendship Bridge over the Mekong in anticipation of the forthcoming direct train traffic from the CLR to the China-Thailand Railway. Designed to run at 180 km/hour over 250 km within Thailand, the high-speed railway will ultimately connect Bangkok north to Nong Khai, where it will be seamlessly docked with the CLR. For now, this sustains a missing link through Thailand for the CLR to connect to Malaysia and Singapore as envisioned by the Trans-Asian Railway network, to which eighteen Asian countries signed on in 2006 (X. Chen, 2022). In this regard, the CLR differs from the CEFT without the latter’s extended subcorridors that stretch and spread trade, logistics, and other economic impacts more broadly across multiple countries.

DRIVING NEW ECONOMIC GLOBALIZATION FROM THE MIDDLE

This chapter offers a new perspective on economic globalization by differentiating the BRI corridors as new regionalizing forces that push and pull cross-border trade ties and economic connections through and along new transport/logistics pathways. This “globalization from the middle”—between the national and local scales and sources—dovetails with a renewed regional focus on the “infrastructure turn” for better understanding collective urban life (Addie, Glass, & Nelles, 2020). I have argued and demonstrated that the three pillars of economic corridors—infrastructure, urban, and economic development (Asian Development Bank, 2022)—under the BRI play a combined role in stimulating more trade, reorganizing production-consumption ties, and fostering cross-border economic integration across Eurasia and between China and Laos and beyond, via the CEFT and CLR, respectively. The most critical infrastructure dimension of regional corridorization features freight rail logistics as the leading and connecting sector and an added path of development, which in turn has reformed the comparative (dis)advantages of extant local and translocal economic pathways and dynamics (Breul, Hulke, & Kalvelage, 2021) as exemplified by stronger Xi’an-Europe and China (Kunming)–Laos (Vientiane) trade and transport linkages.

The two cases illustrate different intersections of these spatial and sectoral economic actors and activities. While appearing as very long rail routes, the CEFT comprises connected logistics corridors and subcorridors that reach far and wide in fostering new cargo flows across Eurasia, remaking it into the dominant long-standing regional arena of economic globalization dating back to the ancient Silk Road and its spinoff trade routes. Primarily a land power historically, China’s return to Eurasia via the CEFT not only reinforces its early role in shaping the Eurasian economy but also extends its maritime reach as an emerging maritime economic power by forging new freight ties between its interior landlocked logistics hubs and coastal cities via intermodal shipping. The China-built
CLR, in comparison, has created a China-Laos economic corridor as an elongated regional space where new trade, tourism, and other economic activities have begun to flow and spread. As the recently operational CLR carries both freight and passengers in larger volumes more frequently, it is capable of stimulating greater transit-oriented urban and economic development along and adjacent to its route, although the CLR-driven corridor development is much more spatially confined than the CEFT.

Emerging from the global scope of the BRI-enabled infrastructure development and economic connectivity, the CEFT and the CLR embody different corridorized regional pathways of new and dense economic globalization from the middle with complex national and local consequences. This phenomenon raises new theoretical and empirical questions and challenges for the study of globalization that this chapter has aimed to address, albeit in a limited manner.

REFERENCES


Globalization: Present


